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Abstract 
A multi-resolution MPS (Moving Particle Semi-implicit) method is applied into 2D free surface 
flows based on our in-house particle solver MLParticle-SJTU in the present work. The basic idea of 
the present MPS method is to distribute high-resolution particles in the local concern region and 
low-resolution particles in the other region, such that both the number of particles and the 
computational cost can be reduced without sacrificing the corresponding accuracy. Considering the 
effect of different size particles, the kernel function is modified for gradient and Laplacian models 
and the incompressible condition between different size particles is enforcing by increasing the 
weight of divergence of velocity in the mixed source term of PPE (Poisson Pressure Equation). In 
order to validate the present MPS method, two cases are carried out. Firstly, a hydrostatic case is 
performed. The results show that the contour of pressure field by multi-resolution MPS is quite 
agreement with that by single resolution MPS. Especially, the multi-resolution MPS can still 
provide a relative smooth pressure together with single resolution MPS in the vicinity of the 
interface between the high-resolution and low-resolution particles. For a long time simulation, the 
kinetic energy of particles by multi-resolution MPS can decrease quickly to the same level as that of 
single resolution MPS. In addition, a 2D dam breaking flow is simulated and the multi-resolution 
case can run stably during the whole simulation. The pressure by the multi-resolution MPS is in 
agreement with experimental data together with single resolution MPS. The contour of pressure 
field by the former is also similar to that by the later. In addition, the simulation by multi-resolution 
MPS is as accurate as the traditional MPS with fine particles distributed in the whole domain and 
the corresponding CPU time can be reduced.  
Keywords: Multi-resolution method, MPS (Moving Particle Semi-Implicit), dam breaking, free 
surface flows 

Introduction 

In recent years, meshfree particle methods have been developed widely and applied successfully 
into practical engineering. Unlike the mesh-based method, the fluid is presented as a set of 
Lagrangian particles in the meshfree method and there is no constant topology relationship between 
these particles. Thanks to the Lagrangian nature, the particle method is very suitable to deal with 
flow with largely deformed free surface and moving boundaries [Liu (2008); Khayyer (2008); 
Tanaka (2010)]. MPS (Moving Particle Semi-implicit) is one of such meshfree methods, which is 
first proposed by Koshizuka [(1996; 1998)] and then improved by numerous MPS practitioners 
[Tanaka and Masunaga (2010); Khayyer and Gotoh (2012); Kondo and Koshizuka (2011); Zhang 
and Wan (2012a)]. Up to now, this method has been applied into a wide variety of violent free 
surface flows, such as liquid sloshing [Zhang and Wan (2012b; 2014)], dam breaking [Khayyer and 
Gotoh (2012); Shakibaeinia and Jin (2011)], wave breaking [Gotoh and Sakai (2006); Khayyer and 
Gotoh (2008); Tang et al. (2014)], green water [Zhang et al. (2013)] and ship-wave interaction 
[Shibata et al. (2012)]. Despite being an excellent method for solving the largely deformed free 
surface problems, it still suffers from high computational cost. Especially when applied into 3D 
simulations, a great number of particles are necessary and the required CPU time can increase 
sharply. To overcome this problem, multi-resolution simulation are introduced to accelerate the 
computation. In the framework of SPH, Vacondio et al. [(2012; 2013)] presented a dynamic particle 
refine algorithm based on particle merging and coalescing during the simulation. Omidvar et al. 
[(2013)] studied the wave body interaction using variable particle mass distribution. Most of these 
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works are carried out based on explicit algorithm. Unlike the SPH, the pressure field is obtained 
based on semi-implicit algorithm in the MPS method. The consuming time per one time level in the 
later method is much more than that in the former. Many MPS practitioners attempt to introduce the 
multi-resolution simulation in the MPS. Shibata et al. [(2012)] proposed an overlapping particle 
technique (OPT) and applied it into a 2D green water. Tanaka [(2009)] presented a multi-resolution 
method based on traditional MPS. Unfortunately, validation is not given in the article. 
 
In the present work, the multi-resolution technique is applied into 2D free surface flows based on 
modified MPS [Zhang and Wan (2012a); Zhang et al. (2014)]. Considering the effect of different 
size particles, the kernel function is modified for gradient and Laplacian models. The 
incompressible condition between different size particles is enforcing by increasing the weight of 
divergence of velocity in mixed source term of PPE. In order to validate the present MPS method, 
two cases are carried out. Firstly, a hydrostatic case is performed. The pressure field and the kinetic 
energy for fluid particles by multi-resolution MPS are compared with that by single resolution MPS 
with fine particle distributed in the entire domain. In addition, a 2D dam breaking flow is simulated 
and the multi-resolution case can run stably during the whole simulation. The comparison among 
the pressure by single resolution MPS and multi-resolution MPS and experimental data is also made. 

NUMERICAL SCHEME 

Governing Equations 

In the MPS method, governing equations are the mass and momentum conservation equations. They 
can read as: 
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Where: ρ  is the fluid density, V  is the velocity vector, P  presents the pressure, ν  is the kinematic 
viscosity, and g  is gravitational acceleration vector, t  indicates the time. It is noted that Eq. (1) is 
only available for incompressible fluid. 

Particle Interaction Models 

Kernel Function 
In the original MPS method, the kernel function (Eq. (3)) first proposed by Koshizuka [(1998)] is 
usually employed by MPS researchers. However, it has a drawback due to its singular at 0r = . 
Conversely, we adopt an improved kernel function introduced by Zhang [(2012a)]: 
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Where 

e
r  denotes the radius of the particle interaction. According to Koshizuka's suggestion, the 

radius adopted in particle number density and the gradient model is 
0

2.1
e

r l= , while 
0

4.01
e

r l=  is used 
for the Laplacian model, where 

0
l  is the initial distance between two adjacent particles.   

 
Gradient Model 
 
In MPS, the gradient operator is discretized as weighted average of the gradient vector between 
particles i  and its neighboring particle j , it can be given as: 
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Eq. (5) cannot conserve the linear and angular momentum of the system, and a conservative form is 
introduced as following [Tanaka and Masunaga (2010)]: 
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Where 0n  is the initial particle number density, d  indicates the number of space dimensions, r  
presents the coordinate vector of fluid particle. 
 
Divergence Model 
 
Similar to gradient model, the divergence model for vector V  can be formulated as [Shakibaeinia 
and Jin  (2012)]: 
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Laplacian Model 
 
The Laplacian operator is modeled by weighted average of the distribution of a quantity φ  from 
particle i  to its neighboring particle j , it can read as the following equations: 
 

2

0

2 d
( ) (| |)

i j i j i

j i

W
n

φ φ φ
λ ≠

< ∇ > = − ⋅ − r r                                               (8) 
2(| |) | |

(| |)

j i j i
j i

j i
j i

W

W
λ ≠

≠

− ⋅ −
=

−





r r r r

r r
                                                       (9) 

 
Where, the parameter λ  is introduced to keep the variance increase equal to the analytical solution. 
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Model of Incompressibility 

In the MPS method, the incompressibility is assured by keeping the particle number density 
constant. There are two stages in each time step when incompressible condition is enforced: firstly, 
temporal velocity of particles is calculated explicitly under the action of viscous and gravitational 
forces, and particles move to intermediate location; secondly, pressure fields are obtained implicitly 
through solving the Poisson Pressure Equation (PPE), and the velocity and position of particles are 
updated based on the obtained pressure.  
 
The Poisson Pressure Equation in MPS method is first derived by Koshizuka [(1998)] as following: 
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Where *n  is the intermediate particle number density, tΔ  denotes the calculation time step. 
 
Eq. (10) is commonly employed by many MPS practitioners. However, the source term of the PPE 
only consists of the deviation of the temporal particle number density from the initial value, and this 
may lead to high oscillation pressure field in spatial and temporal domain because of unsmooth 
particle number density. To stabilize the pressure calculation, a mixed source term method 
combining the velocity divergence-free and constant particle number density is investigated by 
Tanaka et al. [(2010)] and rewritten by Lee et al. [(2011)] as: 
 

0
2 1 *

2 0
(1 )

k
k i

i i

n n
P V

t t n
ρ ρ

γ γ+ < > −
< ∇ > = − ∇ ⋅ −

Δ Δ
                                      (11) 

 
Where the subscript k  and k +1 indicate the physical quantity in the k th and k +1 th time step, γ  is 
the weight of the particle number density in the source term and is assigned a value between 0 and 1. 
In this paper, γ = 0.01 is selected. 
 

Detection of Free Surface Particles 

In the original MPS method, zero pressure boundary condition are enforced to the free surface 
particles. Free surface particles are recognized as the particle number density satisfying the 
following condition [Koshizuka (1998)]: 
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Where 0n  is the initial particle number density, and β  indicates a threshold parameter and can be 
chosen between 0.8 and 0.99. However, misjudgment may occur for inner particles with small 
particle number density, and imposed unphysical false zero pressure may increase the oscillation 
frequency and amplitude of pressure field. To overcome this, some approaches have been 
developed to improve the accuracy of surface particle detection. Tanaka et al. [(2010)] judged the 
surface particle by using number of neighbor particles. This approach is further improved by Lee et 
al. [(2011)]. Khayyer et al. [(2009)] proposed a new criteria based on asymmetry of neighboring 
particles in which particles are judged as surface particles according to the summation of x-
coordinate or y-coordinate of particle distance. In the present study, we employ a detection method 
[Zhang and wan (2012b)] which is also based on the asymmetry arrangement of neighboring 
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particles, but uses different equations, aiming at describing the asymmetry more accurately, as 
following: 
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F is a vector with a large value near the free surface where the neighboring particles distribute 
largely asymmetry. In F function, the nearer neighboring particles have larger contribution, while 
further neighboring particles have smaller effect. This make F function not sensitive to the 
neighboring particles locating near the boundary of interaction domain.  
 
If the absolute of the function F  at particle i  is more than a threshold α , then particle i  is 
considered as free surface particle. Where α  is assigned to 00.9 F , 0F  is the initial value of F  for 
surface particle. 

Modified Gradient and Laplacian Model 

In the single resolution MPS, the interaction radius for each particle is the same as its neighbor 
particles. However, this condition cannot be ensured since both low-resolution particles with larger 
interaction radius and high-resolution particles with smaller interaction radius are distributed in the 
computational domain. This may lead to situations where two interaction particles i  and j  with 
different interaction radiuses. In the other words, the influence domain of particle i  contains 
particles j  but not vice versa. When calculating the force between particle i  and its neighbor 
particle j , a violation of Newton’s third law may occur. In the present work, the supported domain 
for two neighbor particles i  and j  is modified using the arithmetic mean. In particular, the cut-off 
radiuses for gradient and Laplacian models are presented as following respectively: 
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Define L  is the particle diameter, the modification for gradient [Tanaka (2009)] and Laplacian 
models can be expressed as following: 
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TEST CASES 

The hydrostatic case 

In this section, the hydrostatic problem is carried out by the employment of the single resolution 
and multi-resolution MPS. A schematic view of the computational domain for this test is shown in 
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Fig. 1, where both the width of the water tank and the height of fluid are H = 1.0 m. The 
computational parameters are summarized in Table 1. In case A1, the entire computational domain 
is discretized by high resolution particles and the corresponding initial particle space is d = 0.01 m. 
In case A2, two kinds of particle size are employed where the yellow and blue regions are presented 
by high resolution (H/d=100) and low resolution (H/d=50) particles respectively. The height of the 
high resolution region in Case A2 is 0.4 m as the yellow region in Fig. 1. Specially note that the fact 
fluid height in Case A1 and A2 are 1.0 m and 0.995 m respectively. 
 
Fig. 2 shows the pressure field after a long time evolution of the hydrostatic test. The contour of 
pressure field in the fine region by multi-resolution MPS is quite similar to that by single resolution 
MPS with fine particles. Furthermore, in the vicinity of the interface between the high and low 
resolution particles, a relative smooth pressure field can also be predicted by multi-resolution MPS.  
 
Fig. 3 shows the comparison between the kinetic energy predicted by multi-resolution MPS and 
single resolution MPS, where the entire domain is represented by fine particles in the later, while 
the fine particles are only distributed in the yellow region in the former. In Fig. 3, the kinetic energy 
by multi-resolution MPS quickly decreases to the same level as that by single resolution MPS. This 
means that the disturbance produced in the interface between different particle sizes is not large, 
and can be reduced quickly as the initial disturbance in the uniform particle size simulation in this 
case. 
 

     
Figure 1. A schematic sketch of the computational domain for hydrostatic problem 

 

           

 
 (a) Single resolution                             (b) Multi resolution 
Figure 2. The pressure field predicted in Case A1 and A2 
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Table 1. Computational parameters in the simulations 

Cases Initial particle space 
(H/d) Description 

A1 100 Single resolution 
A2 50，100 Multi resolution 

 

 
Figure 3. The comparison between the kinetic energy predicted by single resolution and 

multi-resolution MPS 
 

 
Figure 4. A schematic view of the computation domain for dam breaking 

 

 
 
 
 
 
 
 
 

Figure 5. Initial particle mass distribution for 2D dam breaking problem 
 

Dam Break Flow 

Dam breaking is commonly computed as benchmark case for validation of CFD method in violent 
flows. In this paper, a dam break is simulated to verify the validation and efficiency of the Multi-
resolution MPS method. A schematic view of the computational domain is shown in Fig. 4. The 
tank is 3.22 m long, 2.0 m high. Initial water column is 1.2 m long and 0.6 m high. The water is 
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initially constricted by a removable door which is picked up suddenly at 0t =  s. A wave height 
probe is placed at 2.725 m from the left boundary and two pressure probes are placed on the right 
wall. The initial particle mass distribution for multi-resolution simulation is depicted in Fig. 5, 
where three kinds of particle size are selected, including H/d=30, 60, 120, and corresponding 
masses are 0.4, 0.1 and 0.025 respectively. 
 

 
Figure 6. Propagation of the surge front after dam gate removal compared to literature data 

 

          

 
(a) Single resolution                                      (b) Multi-resolution 

Figure 7. Comparisons of dam-break flows using Single resolution and Multi-resolution MPS 
at gt H =1.45 

 

          

 
(a) Single resolution                                        (b) Multi-resolution 

Figure 8. Comparisons of dam-break flows using Single resolution and Multi-resolution MPS 
at gt H =5.7 

 
The wave front propagation along the downstream horizontal dry bed after the dam door release are 
shown in Fig. 6. The multi-resolution result is quite agreement with that of single resolution MPS 
and is also quite similar to that of SPH [Ferrari et al. (2009)] and BEM [Colagrossi and Landrini 
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(2003)]. However, the speed of the leading edge by these numerical results is quick than that of the 
experiment. Similar results can also be reported in literatures [Koshizuka and Oka (1996); Rogers et 
al. (2010); Abdolmaleki (2004)]. 
 
In Fig. 7 and Fig. 8, the pressure fields by single resolution and multi-resolution MPS are depicted 
for comparison. It can be seen that the computed pressure fields are both relative smooth throughout 
the time of flow propagation, free surface overturning and impacting the underline water. The 
contour of the pressure field by multi-resolution MPS is also similar to that by single resolution 
MPS. 
 

 
Figure 9. Time variations of dimensionless pressure at the bottom of the probe P1 

 
The detailed comparisons of time variations of pressure results at the bottom of the probe P1 are 
shown in Fig. 9, it can be seen that the overall tendency of pressure variation by both the single 
resolution and multi-resolution MPS is quite in agreement with experimental data except a clear 
discrepancy between the position of second pressure peak by the numerical results and experimental 
data, which is also reported by many researchers employing the single phase model [Marrone et al. 
(2011); Khayyer et al. (2009)]. However, the pressure variation by multi-resolution MPS is quite 
close to that of single resolution MPS, including the first impact time and the position of the second 
pressure peak.  
 

 
Figure 10. The number of particles and required CPU time for flowing 3 seconds 

 
Fig. 10 shows the total number of particles and required CPU time for flowing 3s by conventional 
single resolution MPS and multi-resolution MPS. Both of these two cases are carried out on 
personal computer with Intel i7-3770.  From the Fig. 10, the number of particles by multi-resolution 
MPS is nearly half of that by single resolution MPS, while the consuming CPU time in the later is 
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about two times and a half than that in the former. As presented by Koshizuka [(1988)], the 
consuming time for solving PPE is proportional to 1.5 0.5N M , where N  is the number of particles and 
M  presents the average number of neighboring particles. The number of particles in multi-
resolution MPS is less than that in single resolution MPS, which means that multi-resolution MPS 
can reduce the number of particles and further decrease the required CPU time. Therefore, the 
multi-resolution method can be an alternative way to reduce the required computational time if one 
only concern the local region. Furthermore, considering the pressure variation and the contour of 
pressure field between single and multi-resolution MPS, the multi-resolution MPS can reduce the 
CPU time without sacrificing the accuracy. 
 

Conclusions 

In this paper, the multi-resolution MPS method is applied into 2D free surface flows based on in-
house particle solver MLParticle-SJTU. In particular, the entire computation domain is discretized 
with both the low-resolution and high-resolution particles, where only the high-resolution particles 
are distributed in the concerned local region. Considering the effect of different size particles, the 
kernel function is modified for gradient and Laplacian models and the incompressible condition 
between different size particles is enforcing by increasing the weight of divergence of velocity in 
the mixed source term of PPE. To verify the availability and efficiency of the multi-resolution MPS, 
two cases are carried out. Firstly, a hydrostatic case is performed. The results show that the contour 
of pressure field by multi-resolution MPS is nearly the same as that of single resolution MPS. 
Especially, the multi-resolution MPS can still provide a relative smooth pressure in the vicinity of 
the interface between the high-resolution and low-resolution particles. For a long time simulation, 
the kinetic energy of particles by multi-resolution MPS can decrease quickly to the same level as 
that of single resolution MPS with fine particles distributed in the entire domain. In addition, a 2D 
dam break flow is carried out and the multi-resolution case can run stably during the whole 
simulation. Both the pressure variation at the measuring position and the contour of the pressure 
field at different times by multi-resolution MPS are quite in agreement with that of single resolution 
MPS. Considering the required CPU time of these two methods, multi-resolution MPS can reduce 
the computational time without sacrificing its accuracy.  
 
From the above mentioned, it can be seen that the multi-resolution MPS can reduce the required 
number of particles and further decrease the computational cost. When the traditional MPS is 
applied into 3D free surface flows such as ship-wave interaction, a great number of particles are 
necessary and the computational cost can increase sharply. The multi-resolution MPS can be an 
alternative method to solve this problem and relative work is ongoing. 

 

Acknowledgement  

This work is supported by National Natural Science Foundation of China (Grant Nos. 51379125, 
51490675, 11432009, 51411130131), The National Key Basic Research Development Plan (973 
Plan) Project of China (Grant No. 2013CB036103), High Technology of Marine Research Project of 
The Ministry of Industry and Information Technology of China, Chang Jiang Scholars Program 
(Grant No. T2014099) and the Program for Professor of Special Appointment (Eastern Scholar) at 
Shanghai Institutions of Higher Learning (Grant No. 2013022), to which the authors are most 
grateful. 
 



11 
 

References 
Abdolmaleki, K., Thiagarajian, K. P. and Morris-Thomas, M. T. (2004) Simulation of the dam break problem and 

impact flows using a Navier-Stokes solver, Proc 15th Australasian Fluid Mechanics Conference, Sydney. 
Colagrossi, A., and Landrini, M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics,  

Journal of Computational Physics 191, 448-475. 
Ferrari, A., Dumbser, M., Toro, E. F., and Armanini, A. (2009) A new 3D parallel SPH scheme for free surface 

flows, Computers and Fluids 38, 1203-1217. 
Gotoh, H., and Sakai, T. (2006) Key issues in the particle method for computation of wave breaking, Coastal 

Engineering 53, 171-179. 
Hori, C., Gotoh, H., Ikari, H., and Khayyer, A. (2011) GPU-acceleration for moving particle semi-implicit 

method. Computers and Fluids 51, 174-183. 
Khayyer, A., and Gotoh, H. (2008) Development of CMPS method for accurate water-surface tracking in breaking 

waves, Coastal Engineering Journal 50, 179-207. 
Khayyer, A., Gotoh, H., and Shao, S. D. (2008) Corrected incompressible SPH method for accurate water-surface 

tracking in breaking waves, Coastal Engineering 55, 236-250. 
Khayyer, A., Gotoh, H., and Shao, S. (2009) Enhanced predictions of wave impact pressure by improved 

incompressible SPH methods, Applied Ocean Research 31, 111-131. 
Khayyer, A., and Gotoh, H. (2012) A 3D higher order Laplacian model for enhancement and stabilization of pressure 

calculation in 3D MPS-based simulations, Applied Ocean Research 37, 120-126. 
Kondo, M., and Koshizuka, S. (2011) Improvement of stability in moving particle semi‐implicit method, International 

Journal for Numerical Methods in Fluids 65, 638-654. 
Koshizuka, S., Nobe, A., and Oka, Y. (1998) Numerical analysis of breaking waves using the moving particle semi-

implicit method, International Journal for Numerical Methods in Fluids 26, 751-769. 
Koshizuka, S., and Oka, Y. (1996) Moving-particle semi-implicit method for fragmentation of incompressible 

fluid, Nuclear science and engineering 123, 421-434. 
Lee, B. H., Park, J. C., Kim, M. H., and Hwang, S. C. (2011) Step-by-step improvement of MPS method in simulating 

violent free-surface motions and impact-loads, Computer methods in applied mechanics and engineering 200, 1113-
1125. 

Liu, M. B., Liu, G. R., and Zong, Z. (2008) An overview on smoothed particle hydrodynamics, International Journal of 
Computational Methods 5, 135-188. 

Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Touzé, D. L., and Graziani, G. (2011) δ-SPH model for 
simulating violent impact flows, Computer Methods in Applied Mechanics and Engineering 200, 1526-1542. 

Omidvar, P., Stansby, P. K., and Rogers, B. D. (2013) SPH for 3D floating bodies using variable mass particle 
distribution, International Journal for Numerical Methods in Fluids 72, 427-452. 

Rogers, B. D., Dalrymple, R. A., and Crespo, A. J. C. (2010) State of the art of classical SPH for free surface flows, 
Journal of Hydraulic Research 48, 6-27. 

Shakibaeinia, A., and Jin, Y. C. (2011). A mesh-free particle model for simulation of mobile-bed dam break, Advances 
in Water Resources 34, 794-807. 

Shakibaeinia, A., and Jin, Y. C. (2012) MPS mesh-free particle method for multiphase flows, Computer Methods in 
Applied Mechanics and Engineering 229, 13-26. 

Shibata, K., Koshizuka, S., Sakai, M., and Tanizawa, K. (2012) Lagrangian simulations of ship-wave interactions in 
rough seas, Ocean Engineering 42, 13-25. 

Shibata, K., Koshizuka, S., and Tamai, T. (2012). Overlapping particle technique and application to green water on 
deck, Proceedings of 2nd International Conference on Violent Flows, Nantes, France. 

Tanaka, M., and Masunaga, T. (2010) Stabilization and smoothing of pressure in MPS method by quasi-
compressibility, Journal of Computational Physics 229, 4279-4290. 

Tanaka, M., Masunaga, T., and Nakagawa Y. (2009) Multi-resolution MPS method, Transactions of JSCES. 
Tang, Z. Y., Zhang, Y. X., Li, H. Z., and Wan, D. C. (2014) Overlapping MPS method for 2D free surface flows, 

Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan. 
Vacondio, R., Rogers, B. D., and Stansby, P. K. (2012) Accurate particle splitting for smoothed particle hydrodynamics 

in shallow water with shock capturing, International Journal for Numerical Methods in Fluids 69, 1377-1410. 
Vacondio, R., Rogers, B. D., Stansby, P. K., Mignosa, P., and Feldman, J. (2013) Variable resolution for SPH: a 

dynamic particle coalescing and splitting scheme, Computer Methods in Applied Mechanics and Engineering 256, 
132-148. 

Zhang, Y. X., and Wan, D. C. (2012a) Numerical Simulation of liquid sloshing in low-filling tank by MPS, Chinese 
Journal of Hydrodynamics 27, 100-107. 

Zhang, Y. X., and Wan, D. C. (2012b) Apply MPS method to simulate liquid sloshing in LNG tank, In Proceedings of 
the 22nd international offshore and polar engineering conference , Rhodes. 

Zhang, Y. X., and Wan, D. C. (2014) Comparative study of MPS method and level-set method for sloshing flows, 
Journal of Hydrodynamics 26, 577-585. 



12 
 

Zhang, Y. X., Wang, X., Tang, Z. Y., and Wan, D. C. (2013) Numerical Simulation of Green Water Incidents Based on 
Parallel MPS Method, In The Twenty-third International Offshore and Polar Engineering Conference, International 
Society of Offshore and Polar Engineers, Alaska. 

Zhang Y. X., Yang Y. Q., Tang Z. Y., and Wan D. C. (2014) Parallel MPS method for Three-Dimensional liquid 
sloshing, Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan. 

Zhu, X., Cheng, L., Lu, L., and Teng, B. (2011) Implementation of the moving particle semi-implicit method on 
GPU, Science China Physics, Mechanics and Astronomy 54, 523-532. 


